skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cao, Hui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The manipulation of ions in complex oxide materials can be used to mimic brain-like plasticity through changes to the resistivity of a neuromorphic device. Advances in the design of more energy efficient devices require improved understanding of how ions migrate within a material and across its interface. We investigate the exchange of oxygen and hydrogen in a model SrCoOx epitaxial film—a material that transitions between a ferromagnetic metal and antiferromagnetic insulator depending on the oxygen concentration. Changes to the film during ionic liquid gating were measured by in situ synchrotron x-ray techniques as a function of time and gate voltage, examining the reversibility of the oxide over one complete gating cycle. We find that the out-of-plane lattice constant and oxygen vacancy concentration of SrCoOx are largely reversible although changes were observed in the ordered vacancy structure. Our results provide much needed insight into electrolyte-gated phase behavior in the transition metal oxides. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. We experimentally investigate spatiotemporal lasing dynamics in semiconductor microcavities with various geometries, featuring integrable or chaotic ray dynamics. The classical ray dynamics directly impacts the lasing dynamics, which is primarily determined by the local directionality of long-lived ray trajectories. The directionality of optical propagation dictates the characteristic length scales of intensity variations, which play a pivotal role in nonlinear light-matter interactions. While wavelength-scale intensity variations tend to stabilize lasing dynamics, modulation on much longer scales causes spatial filamentation and irregular pulsation. Our results will pave the way to control the lasing dynamics by engineering the cavity geometry and ray dynamical properties. 
    more » « less